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Abstract. A real-space renormalisation group method is applied to viscous fingering to 
analyse the fractal nature at a finite viscosity ratio. The renormalisation group transforma- 
tion is obtained for the permeability of the surface layer which plays the role of coupling 
constant in the renormalisation group of the phase transition. A stable fixed point is found 
as a function of the viscosity ratio. The growth probabilities on the perimeter bonds of 
the injected fluid are evaluated at the fixed point. The multifractal scaling properties are 
found to be described by the generalised dimensions and the a - f  spectra. It  is shown that 
at a finite viscosity ratio the displaced area is compact with a surface fractal dimension 
between 1 and the DLA result with increasing viscosity ratio. This result is consistent with 
that of King’s numerical simulation. 

Recently, there has been increasing interest in the problem of geometrical structure in 
kinetic growth models [l-111. The structure of the aggregates strongly depends on the 
dynamics of the growth process. An analogy [12] has been suggested between the 
diffusion-limited aggregation ( D L A )  model of Witten and Sander [ 11 and viscous 
fingering with a zero-viscosity displacing fluid. Since then many attempts have been 
made to modify DLA to include surface tension effects [ 13,141. However, fewer attempts 
to allow for a finite viscosity ratio [ 15, 161 have been made. The question of the nature 
of the fingered patterns at a finite viscosity ratio has been left unanswered. Very recently, 
King [17] presented a numerical simulation for the fingered patterns at a finite viscosity 
by using a network model of the porous medium. He found that at a finite viscosity 
ratio the displaced area is compact with a surface fractal dimension between 1 and 
the DLA result with increasing viscosity ratio. 

In this comment, we extend the real-space renormalisation group method for the 
DLA [ 18-20] to analyse the fractal nature of the viscous-finger fractal at a finite viscosity 
ratio. We derive the surface fractal dimensions as a function of the viscosity ratio. The 
multifractal structure is studied with varying viscosity ratio. We suggest an analogy 
between the viscous finger at a finite viscosity ratio and the electro-deposited aggregate 
at a finite conductivity ratio. 

When a fluid is forced into a porous medium to displace another more viscous 
fluid the interface between the two fluids develops a highly complex fingered pattern. 
The growth of the injected fluid occcurs on the perimeter of the finger. In our model 
the growth probability at the growing perimeter bond i is given by p’, -grad P, where 
~ 7 ,  is the probability that bond i becomes part of the finger and grad P, is the local 
pressure gradient at the growth bond. The basic equation governing the viscous 
fingering is given by 

k V 2 P  = 0 (1) 
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where P, k and V2 represent the pressure, permeability and Laplacian, respectively. 
The permeability is proportional to the inverse of the viscosity. The viscosity ratio M 
is defined as v D / v , ( = k , / k D )  where v l  is the viscosity of the injected fluid and vD is 
the viscosity of the displaced fluid. We consider the discrete version of equation (1). 
We merely solve a Laplace equation for a finger cluster inside an infinite more viscous 
fluid network. Here we assume that the dynamics of the formation of a viscous finger 
is determined by a ’quasi-stationary’ pressure field, similar to DLA [21]. The process 
of the formation of a finger is a purely dissipative system without convection in a 
non-equilibrium steady state. The process is characterised by the theorem of minimum 
entropy production or minimum dissipation energy. We consider the dissipation energy 
in contrast to the free energy (or Hamiltonian). The dissipation energy is given by 

where the first term represents the summation of local dissipation energy of each bond 
over the total bonds within the system, and the second term indicates the total 
dissipation energy in the representation of the total permeability k, and the total 
pressure drop VP,  of the system. Thus the dissipation energy form (2)  describes the 
interaction between neighbouring potentials by this simple gradient term C P, .  The 
total flow through the interface of the finger is given by J, =E, ,  k,,VPi\ where the sum 
indicates the summation over all the bonds on the growing perimeter. We can write 
the dissipation energy in terms of the surface permeability: 

where k ,  indicates the permeability of the bonds on the perimeter of the finger. By 
using a decimation method, one may write the dissipation energy in terms of the 
coarse-grained variables k:s ,  VPiS on the new lattice with lattice spacing b ( b  is a scale 
factor): 

Thus the short-range interaction between neighbouring pressures caused by the gradient 
term is renormalised. The surface permeability k ,  is transformed to k&. This surface 
permeability plays a role of the so-called coupling constant in the Hamiltonian of the 
phase transition. We shall derive the renormalisation group equation for the surface 
permeability: k& = R ( k , ) .  We must distinguish between three types of bonds on the 
lattice before a renormalisation procedure: ( a )  interior bonds which are occupied by 
injected fluid and construct the finger; ( b )  growth bonds which are on the interface 
of the finger, occupied by the displaced fluid and can be successively grown; and ( c )  
exterior bonds which are occupied by the displaced fluid except for the growth bonds. 
Figure l ( a )  shows a part of the finger near the interface where the interior, growth 
and exterior bonds are respectively indicated by the bold, wavy and full lines. Cover 
all the space of the square lattice by cells of edge b (scale factor), each containing 2b’ 
bonds; an example for b = 2 is shown in figure 2. After a renormalisation transformation 
these cells play the role of ‘renormalised’ bonds. The renormalised bonds are then 
classified into three types of bonds, similarly to the bonds before the renormalisation. 
The renormalisation procedure is indicated by figure 2. If the cell is spanned with the 
bonds occupied by the injected fluid then the renormalised bond is considered to be 
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( U )  ( b l  

Figure 1. An example of the renormalisation of a part of the surface layer of a finger. 
Bonds constructing the finger are indicated by bold lines and bonds on  the perimeter of 
the finger by wavy lines. The lattice on the left-hand side is renormalised to that on the 
right-hand side, according to the rule of renormalisation. 

L &kt t  
-1 1 I 

( U 1  I b l  I C 1  
Figure 2. Illustration of the renormalisation of a b = 2 cell for viscous fingering. The 
renormalisation procedure in the vertical direction is shown. There are three types of 
bonds: interior bonds indicated by bold lines, growth bonds by wavy lines and exterior 
bonds by full  lines. Examples of the distinct configurations are shown in ( a ) ,  ( b )  and ( c ) ,  
which are renormalised as inferior, growth and exterior bonds, respectively. 

interior (figure 2 ( a ) ) .  If the cell is not spanned with the injected fluid and is nearest 
neighbour to the finger, then the cell is renormalised as the growth bond on the interface 
(figure 2 ( b ) ) .  When the cell is constructed by the displaced fluid only and is not nearest 
neighbour with the finger cluster, the cell is renormalised as the displaced fluid (figure 
2 ( c ) ) .  Figure 1 shows an example of the renormalisation of a part of the finger near 
the interface. The lattice on the left-hand side is renormalised to that on the right-hand 
side, according to the rules of renormalisation. We consider the permeabilities of the 
three types of the bonds. After many repeated renormalisations, each permeability of 
the three types of bonds must approach to each finite valile because the total permeabil- 
ity k ,  of the system has a finite value, except for zero. The permeability of the cell to 
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be renormalised as the exterior bond does not change before and after the renormalisa- 
tion because all the bonds within the cell are occupied by displaced fluid. The condition 
that the permeability of the cell to be renormalised as the interior bond has a finite 
value, except zero, is satisfied by constructing the cell within which all the bonds are 
occupied by the injected fluid. Otherwise, the permeability of the interior bond 
approaches the zero value after many repeated renormalisations and the growth of the 
finger stops. Hence the interior of the fingers is compact. We consider the permeability 
of the cell that can be renormalised as the growth bond. We define the permeability 
of the growth bond as a surface permeability. The non-local nature of the pressure 
field is taken into account as the permeability of the growth bond. If one considers 
the renormalisation in the vertical direction, we shall take periodic boundary conditions 
in the lateral direction. The constant voltage is vertically applied. Figure 3 shows all 
configurations of the cell that it is possible to renormalise as the growth bond. Let us 
consider the configurational probability C, with which a particular configuration a 
appears. The distinct configurations are labelled by a ( a  =0,  1 ,2 ,3)  in figure 3. 
Configuration ( 1 )  is constructed by adding an interior bond to configuration (0). In 
addition, by adding an interior bond to configuration ( l ) ,  configurations ( 2 )  or (3) 
occur. Furthermore, we introduce another route, in which configuration (3) is directly 
constructed from configuration (0). The interface grows uniformly with a finite proba- 
bility because the interior of the finger is compact. We assume that the probability A 
growing uniformly is proportional to the permeability ratio k G / k l  where kG and k ,  
indicate respectively the permeabilities of the growth bond and interior bond. At the 
limit of the zero-viscosity displacing fluid, the uniformly growing probability A becomes 
zero. The configurational probabilities C, are given by 

ci = ( 1  - A )  ~ O ( P 0 . i  +Po.*) 

c 2 =  ( 1  -A)G(P12+P1,3) ( 5 )  

C3 = (1 -A)C,p1,4+ AC" 

where A = kG/  k ,  and pe , ,  represent the growth probability of the growth bond i within 
the cell a. The configurational probability CO is determined from the normalisation 

I I+ 
H- 
7 (31 1y- 34 

10)  ( 1 1  

1 2 1  
Figure 3. All distinct configurations of the 2 x 2 cell that it is possible to renormalise as 
the growth bond. Configuration (1 )  is constructed by adding an interior bond to configur- 
ation (0). In addition, by adding an interior bond to configuration ( l ) ,  configurations (2) 
or ( 3 )  occur. Also configuration ( 3 )  is directly constructed from configuration (0). 
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condition 
c c, = CO + c, + c, + c, = 1 
a 

The growth probability pa , ,  on the growth bond i within the cell a is proportional to 
the pressure gradient VP, on the growth bond. Consider the Laplace equation for cells 
which can be renormalised as the growth bond. The pressure field within a cell is 
determined by the permeabilities of the interior, exterior and growth bonds and the 
configuration of the cell. In the configuration labelled by a (see figure 3). the growth 
probabilities pa,, of growth bonds i are given by 

P2.l  = P2,r = i 
p3.l = p3,2 = t 

where kl ,  k D  and kG indicate the permeabilities of the interior, exterior and growth 
bonds, respectively, and by setting k D =  1 the viscosity ratio is given by M = k , .  The 
permeability k&,, of the cell with configuration a is renormalised as follows: 

k k i , 0 = 2 k G / ( l  + k G )  

k & , l  = kG[ (4' 3 k G )  + ( kG/  k l ) ( 3  + 2 k C i ) l /  [ ( 

k b , 2  = 

+ k G )  + ( kG/  k l )  ( 3  + k G ) l  
(8) 

kG/  [1 + ( k G /  k l ) l  

kb,3 = kG,Z.  

The renormalised permeability k& of the growth bond will be assumed to be given by 
the most probable value 

k;; = exp[Co log(k&,o)+ Cl log(k&,,)+ CZ M k & , * ) +  c3 log(kL.3)l. (9) 
The relationships (8) and (9) present the renormalisation group equation k& = R (  k G ) .  
Equations ( 5 ) - ( 9 )  are simultaneously solved. We find a non-trivial fixed point k g  from 
k$ = R (  k & )  as a function of the viscosity ratio M (  = k l ) .  Figure 4 shows the schematic 

Figure 4. Schematic behaviour of the renormalisation function k& = R ( k , )  as a parameter 
of the viscosity ratio M. The R G  equation has a stable fixed point between 1 and the DLA 

result with increasing viscosity ratio. 
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behaviour of the renormalisation function k& = R (  kG) as a parameter of the viscosity 
ratio M (  = k,). When the viscosity of the injected fluid approaches that of the displaced 
fluid (A4 + l) ,  the fixed point approaches one (kZ/kD+ 1). In the limit of a zero- 
viscosity injected fluid, the fixed point becomes that of DLA: kT;/ kD = 2.326. The RG 

equation has a fixed point between 1 and the DLA result with increasing viscosity ratio. 
At the fixed points, the derivatives dR/dkG have positive values less than one. They 
are stable fixed points. These results represent stable steady states and are consistent 
with the entropy production minimum theorem or the dissipation energy minimum 
theorem [20]. 

We now consider the growth probability on any growth bond. We define the two 
growth probabilities: ( a )  the growth probability pt( L )  over the total perimeter bonds 
of the finger with the size L and ( b )  the growth probability pa, ,  on the growth bond i 
within the cell a. Before and after renormalisation, the growth probability F , ( L )  on 
any growth bond i  is given by 

F,(L) =p,,,F,(Llb) (10) 

where L represents the size of the system and b is the scale factor. The cell's growth 
probability pa, ,  is represented by a function of the permeability of the growth bond as 
a parameter of the viscosity ratio M ( = k , ) .  After many repeated renormalisations, the 
growth probability assigned to each growth bond is represented by a random multiplica- 
tive process of the cell's growth probabilities evaluated at the fixed point. In the limit 
of L sufficiently large, an infinite hierarchy of generalised dimensions D( q )  is given by 

(11) 

where ( )c indicates the configurational average and p z , ,  represents the cell's growth 
probability evaluated at the fixed point. The surface fractal dimension d ,  is given by 
D ( 0 ) .  A dependence of the surface fractal dimension on the viscosity ratio M is shown 
in figure 5 .  I t  shows a continuous function of viscosity ratio between one (for unit 
viscosity ratio) and about 1.526 for the infinite viscosity ratio case analogous to DLA. 

D ( q ) = - ( q - l ) - '  I,(Tp?:) ' (log b1-I 

t 
1 6 t  

d5 I 4  L 
L 

1 2 -  
T 

1 

I 

1 01 ; ' ,  5 , I  I I I  , 
0 0 2  0 4  0 6  O B  1 0  

in-1,i i M + 1 )  
Figure 5. Surface fractal dimension as a function of viscosity ratio. The full circles indicate 
the numerical result b) King [17]  
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We now show that the cluster-top occupancy probability ia determines the fractal 
dimension df, following Turkevich's method [22, 231. Given a (L, M )  finger which 
consists of M bonds and  has size L, we obtain 

(12) 
where p',,, and Cu indicate the maximum growth probability and the uniform growth 
probability, respectively. Since the scalings ( l / i m a x )  - LD'iC' and ( l / c u ) - L  ( O <  
D ( w )  < 1) hold, we obtain the fractal dimension d ,  = 2 from M - L'. Hence the interior 

AM = ( l / i a ) A L  = [( 1 - A ) / i m a x  + A/iU]AL 

5 

t -1 

4 
Figure 6. The generalised dimension D ( 9 )  of the viscous fingering at a finite viscosity 
M .  The curves A-D indicate the results for M = 3, 5, 10, a3, respectively. 

I 

1 6 C  -1 

f 

1 

ratio 

a 
Figure 7. The a-f  spectra of the viscous finger fractals at finite viscosity ratios M = 3 ( A ) ,  
5 (B), 10 ( C ) ,  cc (D).  
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of the finger is compact. We note that [D(a) + 11 is not identical with the fractal 
dimension dF for viscous fingering at a finite viscosity. The partition of D ( q )  into a 
density of singularities f (  q )  with singularity strength a (  q )  is introduced: 

The mutifractal scaling structure is shown in figures 6 and 7: D ( q )  in figure 6 and the 
a-  f spectra in figure 7. As the viscosity ratio M decreases, the a-f  spectrum becomes 
a more steep curve in the range of positive q. This is analogous to the generalised 
DLA model (r] model) [24-261. However, in the range of negative q, the a- f  spectrum 
becomes more smooth with decreasing viscosity ratio, in contrast to the r] model. 

In summary, we have applied the real-space renormalisation group method to the 
viscous-finger fractal at a finite viscosity ratio. We have analytically found the surface 
fractal dimension and the a-j. spectra depending on the viscosity ratio. We have 
shown that at a finite viscosity ratio the displaced area is compact with a surface fractal 
dimension between 1 and  the DLA result with increasing viscosity ratio. This result is 
consistent with that of King's numerical simulation. 
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